Introduction of OpenWALAS

English words: 478 ; Chinese word: 0

三维波浪载荷及水弹性响应分析软件包括主界面程序OpenWALAS和5个核心可执行程序:OpenWALAS_PREOpenWALAS_FSCMOpenWALAS_TDGFOpenWALAS _IORMOpenWALAS _TIME_RESP。作者开发了三维频域线性和三维时域非线性波浪载荷及水弹性响应计算程序,软件理论基于三维势流理论和三维弹性结构模态叠加法。

1. 软件说明

1.1. 基本情况

1.1.1. 概述

三维波浪载荷及水弹性响应分析软件(时域或频域)-OpenWALAS的主界面见Fig. 1,其中包含主界面程序OpenWALAS和5个核心可执行程序:OpenWALAS_PREOpenWALAS_FSCMOpenWALAS_TDGFOpenWALAS _IORMOpenWALAS _TIME_RESP。作者开发了三维频域线性和三维时域非线性波浪载荷及水弹性响应计算程序,软件理论基于三维势流理论和三维弹性结构模态叠加法。

Fig. 1 WALAS程序主界面

(1) OpenWALAS_PRE为数据预处理程序,主要用于通过干面元及其振型信息来计算湿模型的振型,其中结构有限元模型为3D FEM模型或梁模型。

(2) 三维时域计算分析功能:OpenWALAS_TDGF(时域格林函数法,‘TDGF’)和OpenWALAS_IORM(内外场匹配的Rankine源法,‘IORM’)为核心计算程序,主要计算水动力系数,包括辐射势脉冲响应函数、绕射势脉冲响应函数、入射势脉冲响应函数、波浪载荷脉冲响应函数等。

(3) 三维频域计算分析功能:OpenWALAS_FSCM(三维频域航速修正方法,‘FSCM’),采用三维频域航速修正假设(即低速、高频)计及航速影响,主要计算入射力、绕射力、附加质量和附加阻尼等动力系数、运动和波浪载荷、水弹性模态响应、湿表面压力、周围流场波高分布。并具备在内部自由面添加刚盖消除不规则频率功能(即扩展积分方程)。

(4) OpenWALAS_TIME_RESP为时域模态响应计算程序,里面包含了间接时域、非线性入射力、静水恢复力、砰击力、弹性模态时域响应和波浪载荷等计算功能。

1.1.2. 功能简介

OpenWALAS程序包括船体网格自动划分、船体网格切分、直梁模态分析、横剖面特性计算等功能,以及三维模型显示和二维曲线绘制功能。

1.1.3. 程序运行顺序

(一) 方式一:运行OpenWALAS界面完成输入参数设置、计算和后处理绘图,在界面中完成一切操作。

(二) 方式二:手动调用

(1) 三维频域模块:OpenWALAS_PRE-> OpenWALAS_FSCM。

(2) 三维间接时域模块:OpenWALAS_PRE-> OpenWALAS_FSCM -> OpenWALAS_TIME_RESP。

(3) 三维直接时域模块:OpenWALAS_PRE -> OpenWALAS_TDGF or OpenWALAS_IORM -> OpenWALAS_ TIME_RESP。

1.1.4. 输入参数方式

本程序输入参数方法有两种:

(1)方式一-窗口界面,见第3章;

(2)方式二-文本输入方式,见第4章。

1.2. 程序编译和开发环境

程序语言:C/C++;

程序编译环境:Qt + Eclipse + MinGW(GCC) + gsl;其中Qt(C++)为WALAS的窗口界面开发库,Eclipse为集成开发环境;minGW(GCC)为C语言编译器,gsl为C数值计算库。

开发环境版本:1、Qt-5.14.0;2、MinGW(GCC)-7.3.0;3、gsl-2.6;4、Qwt-6.1.4;5、Opencv-4.2.0。

1.3. 软件安装和运行环境

本软件适用于Window XP、Win 7、Win 8、Win 10等主流Win操作系统,发布有32位和64位程序。

本软件套件同时适用于Linux、Unix和Mac OS操作系统,发布有32位和64位程序。

MSC.Patran/Nastran 2005 或更高版本(仅在结构弹性模态分析中需要)。

2. 理论基础

2.1. Coordinate systems

干结构坐标和湿面元坐标均是:x正方向指向船头,y指向左舷,z指向上,符合右手法则。

干结构坐标系可以与湿面元坐标系不一样,但是要在case.in文件中指明。

在程序内部计算和输出结果中,所有的坐标原点均转换到湿坐标原点在静水面投影处(即在内部计算使用参考坐标系)。

The ships are straightly travelling with constant forward speed . For convenience of presentation, three coordinate systems are established shown in Fig. 2, which are

(1) The space fixed coordinate system O0x0y0z0: the coordinate origin is located at the still water surface, the axis O0x0 points to the bow, the axis O0y0 points to the port side, and the axis O0z0 is upward perpendicular to the still water surface.

(2) The equilibrium coordinate system (also called reference coordinate system) Oxyz: the coordinate system moves forward accompanying ship along x axis at constant speed U0, which coincides with the space fixed coordinate system O0x0y0z0 at the initial moment. And, the axis Ox keeps toward the axis O0x0 during ship motion.

(3) The local coordinate system O’x’y’z’: this coordinate system is fixed on the hull. When the hull is in the equilibrium position, this coordinate system overlaps with the equilibrium coordinate system. The origin position changes with the translational motion of the hull and the direction changes with the rotation of the hull.

Fig. 2 Sketch of the coordinate systems

The fluid boundary is combined by wetted body surface , free surface , intersection of body surface and free surface , infinite boundary . denotes the fluid field. denotes the normal direction of body surface towards the inner of ship hull. denotes forward speed of ship hull.

Both of the space fixed coordinate system and the equilibrium coordinate system obey right-hand rule. There are the following coordinate transformation relations.

2.2 Wave direction and expression

The definition of wave direction shown in Fig. 3, 0 degree and 180 degree denote following sea and heading sea, respectively.

Fig. 3 Sketch of wave direction

The first-order formula of the instantaneous height of the incident wave is

where the variables A, k and denote the wave amplitude, wave number and natural wave frequency, respectively. In addition, and .

The first order formula of incident velocity potential in the equilibrium coordinate system is

where , h and g denote the amplitude of the incoming potential of fluid, the water depth and the gravitational acceleration constant, respectively.