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A B S T R A C T   

The irregular frequencies affect the analysis of hydroelastic responses and wave loading of the floating structures, 
such as springing and whipping. In numerical prediction, the responses are likely to be overestimated. The 
theoretical basis of three-dimensional hydroelasticity for removing irregular frequencies in infinite and finite 
water depths is formed by a boundary integral method and adding a rigid lid to free surface of the inner fluid 
zone. One barge and one bulk carrier are taken as research objects for validating the feasibility of method for 
hydroelasticity and investigating the influence of the irregular frequency on hydrodynamic coefficients, 
diffraction forces and hydroelastic responses. The effectiveness of the method and mesh of the rigid lid are 
assessed. The method adopted in the paper could efficiently eliminate the irregular frequency for infinite and 
finite water depths. The irregular frequencies should be eliminated in a hydroelastic response assessment, 
especially for the large floating structures.   

1. Introduction 

Irregular frequencies correspond to the eigenfrequencies of the 
interior homogeneous Dirichlet problem (Ohmatsu, 1975) and affect the 
correctness of the solution, which have large influence on hydrodynamic 
coefficients, diffraction forces and motion responses in wave-body 
interaction analysis. The irregular frequency elimination of rigid 
floating structures in seakeeping is a traditional problem. There are 
many studies involving the irregular frequencies of rigid floating 
structures (Ohmatsu, 1975; Ursell, 1981.; Lee and Sclavounos, 1989; 
Zhu, 1994; Lee et al., 1996; Teng and Li, 1996; Du et al., 2011; Song and 
Teng, 2016). The extended integral equation is widely used for removing 
irregular frequencies (Lee and Sclavounos, 1989; Zhu, 1994; Lee et al., 
1996). Another method is to modify the Green’s function (Zhu, 1994). 
One new approach is the wall damping method (Liu and Falzarano, 
2019), where the gap resonance in side-by-side offloading problems has 
been investigated by the method. A unique solvable higher-order BEM 
(boundary element method) for wave diffraction and radiation was 
investigated (Teng and Li, 1996). The occurrence of irregular fre-
quencies in the numerical calculations of forward speed ship seakeeping 
has been studied (Du et al., 2011), indicating that there are few irregular 
frequencies in forward floating structures. An integral equation 

removing the irregular frequency was introduced into the pre-corrected 
FFT method for the wave-structure interaction (Song and Teng, 2016). 
The irregular frequency influences elastic response prediction, but few 
studies have considered irregular frequencies in hydroelastic mechanics. 
Some researchers have tried to eliminate irregular frequencies in a 3D 
hydroelastic analysis (Ni et al., 2019), and the studies indicated that the 
hydroelastic responses are influenced by irregular frequency effect. 
However, the detailed framework and deepening summary of the phe-
nomenon have not been presented by considering hydroelasticity. Thus, 
it is necessary to form the framework of the fundamental theory and 
integral equation for eliminating irregular frequencies. 

In the past two decades, floating structures have developed rapidly 
on a large scale. For example, the maximum volume of containers has 
increased from several thousand to more than 22,000 TEU. The 
springing of an ultra-large ore carrier with 500,000 DWT was investi-
gated using the 3D second-order nonlinear hydroelastic method in the 
frequency domain (Hu et al., 2012). Furthermore, the nonlinear 
hydroelastic responses, springing and whipping of a large bulk carrier 
were studied by means of an inner and outer region matching method 
and model tests (Yang, 2016;Yang et al., 2018). A fully coupled 
time-domain solution for the hydroelastic analysis of a floating body was 
established (Pal et al., 2018). However, due to the emergence of large 
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offshore structures or multi-module floating structures, the hydroelastic 
method has been increasingly widely used. The hydroelasticity of very 
large floating structures in the presence of inhomogeneous sea condi-
tions and unsteady external loads was investigated by an indirect 
time-domain method (Wei et al., 2018; Zhang et al., 2018). The 
contribution of wave energy generation devices and auxiliary buoys in 
reducing the hydroelastic responses of very large floating structures was 
studied (Nguyen et al., 2019). The hydroelastic responses of legged 
floating box structures were also studied by a numerical method and 
model tests (Wu et al., 2019). Thus, the development of hydroelastic 
mechanics is very important for marine structure and ocean engineer-
ing. And, there are also irregular frequency problems for the direct 
method in time domain, but specific solutions will not be studied in this 
paper. 

Based on a potential fluid model and the superposition of structural 
elastic modes, extended integral equations of elastic floating structures 
with a forward speed are applied for three-dimensional hydroelastic 
mechanics. Assuming that the floating body moves slightly at its equi-
librium position, the nonlinear free-surface condition is linearized. 
Under the assumption of a low speed and high frequency, the radiation 
potential and solution conditions of hydroelasticity in the three- 
dimensional frequency domain are simplified. Furthermore, the influ-
ence of the irregular frequency on hydrodynamic coefficients, diffrac-
tion forces and hydroelastic responses are investigated in hydroelastic 
mechanics. The effectiveness of the method in removing the irregular 
frequency is assessed for infinite and finite water depths. 

2. Fundamental theory and mathematical formulation 

2.1. Basic assumption 

The fluid around an elastic ship hull is usually assumed to be uni-
form, incompressible, non-viscous, and non-rotating when studying the 
interaction between the floating structure and a wave; meanwhile, the 
effects of lift force and surface tension are not considered. On the other 
hand, the elastic deformation of the structure is considered to be small, 
and the overall response satisfies the linear superposition principle of 

the modal deformation. 

2.2. Definition of the coordinate system 

The ships straightly travel with a constant forward speed U0. For 
convenience of the presentation, three coordinate systems are estab-
lished as shown in Fig. 1, which are  

(1) The space fixed coordinate system O0x0y0z0: the coordinate origin 
is located at the still water surface, the axis O0x0 points to the 
bow, the axis O0y0 points to the port side, and the axis O0z0 points 
upward perpendicular to the still water surface.  

(2) The equilibrium coordinate system (also called the reference 
coordinate system) Oxyz: the coordinate system moves forward 
accompanying the ship along the x axis at a constant speed U0, 
which coincides with the space-fixed coordinate system O0x0y0z0 
in the initial moment. In addition, the axis Ox remains pointed 
towards the axis O0x0 during the ship motion.  

(3) The local coordinate system O’x’y’z’: this coordinate system is 
fixed on the hull. When the hull is in the equilibrium position, this 
coordinate system overlaps with the equilibrium coordinate sys-
tem. The origin position changes with the translational motion of 
the hull, and the direction changes with the rotation of the hull. 

The fluid boundary is made up of a wetted body surface Se, a free 
surface Sf , the intersection of the body surface and free surface Γ, and an 
infinite boundary S∞. Ω denotes the fluid field. n! denotes the normal 
direction of the body surface towards the inner zone of the ship hull. U0 
denotes the forward speed of the ship hull. 

Both the space-fixed coordinate system and the equilibrium coordi-
nate system obey the right-hand rule. Consider the following coordinate 
transformation relations. 
8
><

>:

x0 ¼ xþ U0t; y0 ¼ y; z0 ¼ z;rx0 ¼ rx

∂
∂t

�
�
�
�

x0

→
∂
∂t

�
�
�
�
x
� U0

∂
∂x

�
�
�
�
x

(1) 

The definition of the wave direction β shown in Fig. 2 with 0� and 
180� denote the following sea and heading sea, respectively. 

2.3. Decomposition of the velocity potential 

When studying the motion of ocean structures in waves, the total 
velocity potential Φðx0; y0; z0; tÞ in the fixed coordinate system is usually 
decomposed into a wave-making velocity potential φðx; y; zÞ and an 
unsteady velocity potential φðx; y; z; tÞ. The velocity potential of the 
wave-making fluid field is generated by the floating structure sailing in 
still water. The unsteady velocity potential is constituted by incident 
potential, diffraction potential and radiation potential induced by the 
rigid motion and elastic deformation of the floating structures. 

Φðx0; y0; z0; tÞ ¼ bφðx; y; z; tÞ ¼U0φðx; y; z; tÞ þ φðx; y; z; tÞ (2a) 

Then, a new function bφðx; y; z; tÞ is introduced, which is the velocity 
potential in the equilibrium coordinate system and satisfies the Laplace 
equation. In addition, 

∂Φ
∂x0
¼

∂bφ
∂x
;
∂Φ
∂y0
¼

∂bφ
∂y
;
∂Φ
∂z0
¼

∂bφ
∂z

(2b)  

∂Φ
∂t
¼

�
∂
∂t
� U0

∂
∂x

�

bφ (2c) 

The unsteady velocity potential φðx; y; z; tÞ is decomposed into three 
parts. 

φðx; y; z; tÞ ¼φ0ðx; y; z; tÞþφDðx; y; z; tÞ þ φRðx; y; z; tÞ (3)  

where φ0, φD and φR denote the incident potential, diffraction potential 

Fig. 1. Sketch of the coordinate systems.  

Fig. 2. Sketch of the wave direction.  
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and radiation potential, respectively. 
Furthermore, for a regular exciting wave ζ ¼ e� iω0 t, the relationship 

between the wave encounter frequency ω and wave frequency ω0 is as 
follows: 

ω¼ω0 � k0U0 cos β (4)  

where g denotes the gravitational acceleration and k0 denotes the 
wavenumber corresponding to wave frequency ω0. 

The unsteady harmonic potential is expressed as (Wu, 1984). And, 

φðx; y; z; tÞ¼Re
�
φðx; y; zÞe� iωt� (5a)  

where i denotes the imaginary unit. Re denotes a real part. φ represents 
φ0, φD or φR. The expression of potential φ0ðx; y; zÞ of the incident wave 
in finite water depth is 

φ0ðx; y; zÞ¼
Ag
iω0

coshk0ðzþ HÞ
coshk0H

eik0ðx cos βþy sin βÞ (5b)  

where A and H denote the wave amplitude and water depth, 
respectively. 

It is assumed that the motions and distortions of the floating struc-
ture in the waves are small and that the dynamic responses of the whole 
fluid-structure system are linear. According to the principle of linear 
superposition, the radiation potential φR is expressed as a superposition 
of the velocity potential corresponding to each normal (or natural) mode 
of the structure. 

φRðx; y; zÞ¼
X∞

r¼1
� iωprφrðx; y; zÞ (6)  

where pr (r ¼ 1, 2, …, m) denotes the rth modal principal coordinate 
response. In particular, the variable r from 1 to 6, denotes the six rigid 
motions of the floating structure, namely, surge, sway, heave, roll, pitch 
and yaw, respectively. 

The translational displacement u! and rotation θ
! at any position of 

the ship structure may be expressed as an aggregate of displacements in 
its principal modes (Wu, 1984; Price and Wu, 1984; Bishop et al., 1986). 

u!¼
Xm

r¼1
u!rprðtÞ¼

Xm

r¼1
ður; vr;wrÞprðtÞ (7a)  

θ
!
¼
Xm

r¼1
θ
!

rprðtÞ¼
Xm

r¼1

�
θx;r; θy;r; θz;r

�
prðtÞ (7b)  

where u!r ¼ ður;wr; vrÞ and θ
!

r ¼ ðθx;r; θy;r; θz;rÞ denote the translation 
and rotation of each structural node for the rth principal mode, 
respectively. 

2.4. Control equation and boundary condition 

Assuming that the floating body moves slightly at its equilibrium 
position, the nonlinear free-surface condition is linearized. Under the 
assumption of a low speed and high frequency (iω � U0

∂
∂x � iω), the 

radiation potential and solution conditions of hydroelasticity in the 

three-dimensional frequency domain are as follows. This method is 
called the “frequency domain method based on speed correction” for 
considering the forward speed effect. And the schematic diagram of the 
fluid field shown in Fig. 3. 

Control equation in the fluid is 

r2φrðx; y; zÞ¼ 0 (8a) 

The boundary conditions on the free surface, the wetted body sur-
face, seabed radiation and radiation condition are listed as follows, 
respectively. 

∂φr

∂z
� vφr ¼ 0 (8b)  

∂φr

∂n

�
�
�
�
Sb

¼ ar þ
br

ω i (8c)  

lim
z→� ∞
rφr ¼ 0 or

∂φr

∂z

�
�
�
�
z¼� H

¼ 0 (8d)  

lim
R→∞

ffiffiffi
R
p
�

∂φr

∂R
� ikφr

�

¼ 0 (8e)  

where n! denotes the normal direction of the body surface. ar and br 
denote the general boundary conditions of the rth mode of the elastic 
wetted body, respectively. H denotes the water depth. ν ¼ ω2=g. R de-
notes the radiation radius of the outer propagating wave. k denotes the 
wavenumber of encountering wave. Sb denotes the wetted surface of the 
floating structure. 

In Fig. 3, τi and τe denote the virtual internal fluid field and actual 
external fluid field, respectively. The former is surrounded by Si and Sf;i. 
The latter is surrounded by Se, Sf;e, SR and SH. SR denotes the infinite 
boundary surface of the wave radiation. SH denotes the seabed. Si and Se 
denote the inner and outer surfaces of the wetted surface Sb of the 
floating body, respectively. The outside of Se contacts with the actual 
fluid field. The corresponding unit normal vectors n⇀i and n⇀e denote the 
unit normal directions of Si and Se, respectively, which oppositely point 
in the directions of the external and internal fluid fields. Sf;i and Sf;e 

denote the free wave surfaces of the internal fluid field and the external 
fluid field, respectively. Additionally, the corresponding unit normal 
directions are n⇀f;i and n⇀f;e, which point vertically upward and down-
ward, respectively. 

The generalized boundary condition of the radiation potential on the 
body’s wetted surface may be represented as (Wu, 1984) 

∂φr

∂n
¼ð u!r ⋅ n!Þ _pr þ ½ θ

!
r �W! ⋅ n!� ð u!r ⋅rÞW! ⋅ n!�pr (9a)  

where n!¼ ðn1; n2; n3Þ denotes the unit normal vector. W!¼ ðWx;Wy;

WzÞ denotes the velocity of the steady flow relative to the moving 
equilibrium coordinate system. 

The Eq. (9a) can be simplified as 

∂φr

∂n
¼ ar _pr þ brpr (9b)  

and 

ar ¼ u!r⋅ n! (9c)  

br ¼ θ
!

r �W! ⋅ n!� ð u!r ⋅rÞW!⋅ n! (9d) 

For a slender, thin, flat, or slowly moving body, The velocity of the 
steady flow may be simplified as W! ¼ ð � U0; 0; 0Þ. In this case, the 
expression of br in Eq. (9d) can be written as (Wu, 1984) 

Fig. 3. A schematic diagram of the fluid field.  
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br ¼ �
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�
∂vr
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�
∂ur
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�
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��

¼U0
�
n3θyr � n2θzr

�
(9e)  

or br ¼ U0mr, denoting mr ¼ n3θy;r � n2θz;r. 
The boundary control equations and condition of the diffraction 

potential φDðx; y; zÞ are the similar to the radiation case, except for the 
boundary condition Eq. (8c) on the wetted body, which is rewritten as 

∂φD

∂n

�
�
�
�
Sb

¼ �
∂φ0

∂n
(10) 

The diffraction force of the rth mode induced by the diffraction po-
tential is 

FD;r ¼ iωρ
ZZ

Sb

φDardS (11a) 

In addition, the incident force of the rth mode induced by the inci-
dent potential is 

FI;r ¼ iωρ
ZZ

Sb

φ0ardS (11b)  

2.5. Hydrodynamic coefficients and response equation 

For the harmonic exciting wave, the principal coordinate pr in the 
frequency domain is derived and expressed as follows (Wu, 1984). 

½aþA�f€pgþ ½bþB�f _pgþ ½cþC�fpg¼fFg (12)  

where fpg denotes the principal coordinate. ½a�, ½b� and ½c� are the inertia 
mass matrix, damping matrix and elastic restoring force matrix, 
respectively. ½A�, ½B� and ½C� are the generalized added mass, added 
damping and restoring coefficient, respectively. fFg denotes the gener-
alized wave exciting force. The elements of these matrices are as follows 
(Wu, 1984; Du, 1996). 

Ark ¼Re

2

6
4ρ
ZZ

Sb

arφkdSþ ρU0

ZZ

Sb

n!
∂ u!r

∂x
φkdS

3

7
5 (13a)  

Brk ¼ Im

2

6
4ρω

ZZ

Sb

arφkdSþ ρωU0

ZZ

Sb

n!
∂ u!r

∂x
φkdS

3

7
5 (13b)  

Crk ¼ ρg
ZZ

Sb

arwkdS (13c)  

where Re and Im denote the real part and imaginary part, respectively. 
φk is the radiation potential of the kth mode. ρ denotes the fluid density. 

2.6. Wet resonance frequency 

When the ship is floating on a water surface and encounters har-
monic excitation, its structural dynamic responses can contain contri-
butions of different dry natural modes. At special exciting frequencies, 
there are structural resonances. The dry natural frequencies are in the 
vacuum and are changed by the added mass and hydrostatic restoring 
effect from the fluid. The wet resonance frequency of the rth mode of the 
elastic structure in the fluid can be calculated by Eq. (14). When the 
added mass varies with the exciting frequency and the off-diagonal 
element of the added mass matrix and the hydro-static restoring ma-
trix is non-zero, the wet resonance frequency calculated by Eq. (14) is 
approximate. 

fr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
crr þ Crr

arr þ Arr

r

rad=s (14)  

3. Velocity potential integral equation for eliminating irregular 
frequencies 

3.1. Definition of the irregular frequencies 

For solving Eq. (8) (a) to 8 (e), the velocity potential integral equa-
tions of diffraction and radiation are based on either potential or source 
formulations (Zhu, 1994). The irregular frequencies correspond to the 
eigenfrequencies of the interior homogeneous Dirichlet problem 
(Ohmatsu, 1975). The solution of velocity potential φ can be either do 
not exist or are non-unique (Lee et al., 1996), and has singularity, that 
causes the hydrodynamic coefficients (Eq. (13a) and (13b) and the 
exciting force of diffraction (Eq. (11a)) have singularity. Thus, the hy-
drodynamic coefficients and exciting force of diffraction are influenced 
by the irregular frequencies. 

For an arbitrary floating body, the irregular frequencies cannot be 
determined analytically. However, for some simple bodies, such as a 
rectangle barge, the velocity potential satisfies the homogeneous 
Dirichlet condition on the bottom as follows. B, L, and T denote the 
breadth, length and draft of the barge, respectively. The irregular fre-
quencies ω of the barge are as follows (Wu, 1984; Zhu, 1994). 

ω2¼ gk cothðkTÞ;       k¼
��mπ

L

�2
þ
�nπ

B

�2
�1=2

(15)  

where m;n ¼ 1; 2;⋯. 

3.2. Green’s function 

The expressions of Green’s function for an infinite water depth and a 
finite water depth (Wu, 1984; Newman, 1985, 1990) in the frequency 
domain are as follows.  

(1) Infinite water depth 

GðPðx; y; zÞ;Qðξ; η; ζÞÞ¼ 1
r
þ

1
r1 

þP:V:
Z ∞

0

2ν
k � νekðzþζÞJ0ðkRÞdk þ i2πνeνðzþζÞJ0ðνRÞ (16a)    

(2) Finite water depth 

GðPðx; y; zÞ;Qðξ; η; ζÞÞ¼ 1
r
þ

1
r2
þ

P:V:
Z ∞

0

2ðk þ νÞe� kH cosh kðzþ HÞcosh kðζ þ HÞ
k sinhðkHÞ � ν coshðkHÞ

J0ðkRÞdkþ

i
2πðK þ νÞe� KH sinhðKHÞcosh Kðzþ HÞcosh Kðζ þ HÞ

νH þ sinh2ðKHÞ
J0ðKRÞ (16b)  

where P.V. denotes the principle value integral. K denotes the wave-
number of the encountering wave, and K tanhðKHÞ ¼ ν. Pðx; y; zÞ and 
Qðξ; η; ζÞ are the field point and source point, respectively. In addition, 

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � ξÞ2þðy � ηÞ2
q

,r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � ξÞ2þðy � ηÞ2þðz � ζÞ2
q

,r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � ξÞ2þðy � ηÞ2þðzþζÞ2
q

, and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � ξÞ2þðy � ηÞ2þðzþ2HþζÞ2
q

. 
kn is the positive real root of the equation kn tanknHþ ν¼ 0. J0ðkRÞ is the 
zero-order Bessel function of the first kind. 1

r1 
and 1

r2 
are the mirrors of 1r 

about the still water surface and seabed, respectively. 

3.3. Extended velocity potential integral equation 

Since the irregular frequencies correspond to the eigenfrequencies of 
the interior Dirichlet problem, it is possible to place a rigid lid on the 
interior free surface to suppress the interior sloshing modes. This 
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method has been derived by researchers (Ohmatsu, 1975; Kleiman, 
1982). 

For rigid floating structures in an infinite water depth, the extended 
boundary integral equation method for the removal of an irregular fre-
quency has been deduced (Zhu, 1994; Lee et al., 1996). Herein, the 
methods for an irregular frequency elimination in 3D hydroelasticity for 

an infinite water depth and a finite water depth are presented as follows.  

(1) Infinite water depth (Zhu, 1994) 

GðPðx; y; zÞ;Qðξ; η; ζÞÞ� 1
r
þ

1
r1
¼

2
r

(17a)    

(2) Finite water depth 

In the vicinity of the singular point on Sf;i, the fields Pðx; y; zÞ→Sf;i 

and Qðξ;η;ζÞ 2 Sf;i; then, z→0 and ζ ¼ 0. Eq. (16b) can be rewritten as 
(Newman, 1984, Eq. (18); Newman, 1985, Eq. (11) ~ (13); Newman, 
1990). 

GðPðx; y; zÞ;Qðξ; η; ζÞÞ �
�

1
r
þ

1
j2H � jz � ζjj

þ
1

j2H þ jz � ζjj

�

þ

�
1
r2
þ

1
r1
þ

1
j4H þ zþ ζj

�

�
1
r
þ

1
r1
¼

2
r

(17b) 

When the field point P is coincident with the source point Q on the 
free surface, the integral at the singularity is shown in Fig. 4. Sε and rε are 
the area and radius of the surface surrounding the singularity, respec-
tively, and rε � � z. 

φe and φi denote the velocity potential of the external surface and 
inner surface of the fluid boundary, respectively. One new variable σðQÞ
is introduced, and σðQÞ ¼ ∂φeðQÞ

∂ne
�

∂φiðQÞ
∂ne

, called source strength. For the 
Green’s function shown in Eqs. (16a) and (16b), when the field point 
Pðx; y; zÞ or the source point Qðξ; η; ζÞ is on the free surface, ∂G

∂ζ ¼ kG. By 
combining the above formulas and taking, ϕðPÞ ¼ � kφiðPÞ. The 
extended velocity potential integral equations can be given as 

Fig. 4. Schematic diagram of the integral surrounding singularity.  

Table 1 
The principal parameters of the barge.  

Parameters Value 

Length (m) 100.0 
Broad (m) 25.0 
Depth (m) 6.0 
Draft (m) 2.5 
Displacement Δ(t)  6350.0  

Fig. 5. Hydrodynamic model of the barge in the hydroelastic analysis 
(half model). 

Table 2 
The calculation case sets.  

Name Water depth Rigid lid 

’case10 Infinite No 
’case20 ’rigid lid 30

’case30 10 m No 
’case40 ’rigid lid 10

’case50 ’rigid lid 20

’case60 ’rigid lid 30

Fig. 6. Dry modal shapes of the barge.  

Table 3 
Dry natural frequencies and wet resonance frequencies.  

Type Dry natural frequency 
(rad/s) 

Wet resonant frequency 
(rad/s) 

Heave – 0.95 
Roll – 1.12 
Pitch – 1.00 
Two-node vertical bending 

(f2-VB) 
3.00 1.85 

One-node torsion (f1-TN) 3.20 2.45 
Three-node vertical bending 

(f3-VB) 
3.50 2.15 

Two-node horizontal 
bending (f2-HB) 

4.00 3.80  

P. Yang et al.                                                                                                                                                                                                                                    



Ocean Engineering 196 (2020) 106817

6

Fig. 7. Added mass of each mode (10 m water depth).  
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Fig. 8. Added damping of each mode (10 m water depth).  
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4π
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                                ¼ φðPÞ;   P 2 τe [ τi [ Se
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4π
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Se
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1

4π

ZZ
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ϕðQÞGðP;QÞdS

                         ¼ �
1
k

ϕðPÞ;   P 2 Sf;i

(18) 

Furthermore, Eq. (18) is derived on both sides of the normal direc-
tion neðPÞ. Using the rigid condition of the free surface Sf;i: Vf;i ¼

∂φiðQÞ
∂nf;i
¼

0, it is concluded that 

1
2

σðPÞþ 1
4π

ZZ

Se

σðQÞ∂GðP;QÞ
∂neðPÞ

dSþ
1

4π

ZZ

Sf;i

ϕðQÞ
∂GðP;QÞ
∂neðPÞ

dS¼
∂φðPÞ
∂neðPÞ

;P2τe[τi

[Se

(19a)  

1
4π

ZZ

Se

σðQÞ∂GðP;QÞ
∂neðPÞ

dS � φiðPÞþ
1

4π

ZZ

Sf;i

ϕðQÞ
∂GðP;QÞ
∂neðPÞ

dS¼ �
1
k

ϕðPÞ
∂neðPÞ

¼0;P

2 Sf;i

(19b)  

where the source strength σðQÞ of the wetted surface and the source 

Fig. 9. The principal coordinate responses of the barge.  Fig. 10. Diffraction force of each mode (elastic modes, water depth of 10 m, 
wave direction of 45�). 

P. Yang et al.                                                                                                                                                                                                                                    



Ocean Engineering 196 (2020) 106817

9

strength ϕðQÞ of the free surface are unknown variables. ∂φðPÞ
∂neðPÞ denotes 

the normal velocity of the wetted surface, also called the generalized 
normal boundary condition ar, which is a known variable. 

After the source strengths σðQÞ and ϕðQÞ are solved by Eqs. (19a) and 
(19b), the velocity potential φðPÞ of the wetted surface can be obtained 
by the first formula of Eq. (18). 

3.4. Numerical method of solving equation 

Assuming that the panel numbers of the wetted surface and inner free 
surface (also called the rigid lid), are N and M, respectively, the nu-
merical discretization scheme of Eqs. (19a) and (19b) is: 

Fig. 11. Added mass of each mode (infinite water depth).  Fig. 12. Added damping of each mode (infinite water depth).  

Table 4 
The principal parameters of the bulk carrier.  

Parameters Value 

LBP (m)  295.0 
Broad (m) 50.0 
Depth (m) 24.7 
Forward draft Tf (m) 17.71 
After draft Ta (m) 18.73 
Displacement Δ(t)  235610.1 
Forward speed 14.8 (Kn) 
Water depth (m) 200.0  
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(20)  

and 

APQ¼

8
><

>:

0:5 ; P ¼ Q
1

4π
∂G

∂neðPÞ
ΔSQ ; P 6¼ Q

(21a)  

BPQ¼
1

4π
∂G

∂neðPÞ
ΔSQ (21b)  

CPQ¼
1

4π
∂G

∂neðPÞ
ΔSQ (21c)  

DPQ¼

8
><

>:

� 1 ; P ¼ Q
1

4π
∂G

∂neðPÞ
ΔSQ ; P 6¼ Q

(21d)  

where the diagonal coefficients of ½A� and ½D� are 0.5 and � 1.0, 
respectively. 

4. Verification and analysis of the results 

4.1. Barge 

To validate the influence of irregular frequencies and the elimination 
method adopted in the paper, one rectangular barge is taken as the 
research object. The main scales of the barge are shown in Table 1. As 
the barge exhibits mirror symmetry about the X-Z plane, the left half of 
the hydrodynamic model is used, which is shown in Fig. 5 (a). The panel 
number of the half hydrodynamic model is 448 for the barge. To elim-
inate the irregular frequencies, three kinds of rigid lids are introduced, 
as shown in Fig. 5 (b) ~ (d), with mesh sizes of 6m� 6m(51 panels), 
3m� 3m(170 panels), 2m� 2m(350 panels), respectively. Six cases are 
considered for the water depth and the influence of the panel size of the 
rigid lid, as shown in Table 2. 

A 3D FEM model of the barge in vacuum is used to calculate the dry 
global modes and corresponding dry natural frequencies. Fig. 6 shows 
the modes of the two-node vertical bending, one-node torsion, three- 
node vertical bending, and two-node horizontal bending with dry nat-
ural frequencies from 3.0 rad/s to 4.0 rad/s. Then, four structural elastic 
modes are involved in the hydroelastic response analysis. The wet 
resonance frequencies in the fluid are calculated by Eq. (14), as shown in 
Table 3. It is concluded that the vibration frequencies of the barge in the 
fluid are obviously reduced. The artificial viscous damping ratio is 3% 
for heave, roll and pitch and zero for the other modes. The wave di-
rection is 45�. 

The irregular frequencies of the barge are calculated theoretically by 
Eq. (15), which are 1.990, 1.994, 2.002, 2.015, …rad/s. Obviously, the 
irregular frequencies predicted by the above equation become closer to 
each other when m and n are large. 

For the case of a 10 m water depth, the added mass and added 
damping of all modes are shown in Fig. 7 and Fig. 8; meanwhile ρ, r and 
a denote the fluid density, displacement volume and wave amplitude, 
respectively. The numerical results show that the first irregular fre-
quency appears at 2.00 rad/s, which coincides with the theoretical 
result. At the same time, it is concluded that the method adopted in the 
paper can efficiently eliminate the irregular frequency. The coarse mesh 
(’rigid lid 10) can eliminate the irregular frequencies from 2.0 rad/s to 
3.0 rad/s, and the finer mesh (’rigid lid 20) can eliminate the irregular 
frequencies from 2.0 rad/s to 4.2 rad/s. The finest mesh (’rigid lid 30) 
can almost eliminate all the irregular frequencies. It is concluded that 
the finer the mesh is, the better the result. The mesh (’rigid lid 30) is fine 

Fig. 13. Hydrodynamic model of the bulk carrier in the hydroelastic analysis 
(half model). 

Fig. 14. Dry modal shapes of the bulk carrier.  

Table 5 
Dry natural frequencies and wet resonance frequencies.  

Type Dry natural 
frequency (rad/s) 

Wet resonant 
frequency (rad/s) 

Experiment 
Result (rad/ 
s) 

Heave – 0.55 – 
Roll – 0.51 – 
Pitch – 0.60 – 
Two-node vertical 

bending (f2-VB) 
3.77 2.80 2.70 

One-node torsion (f1- 

TN) 
4.35 4.03 – 

Two-node horizontal 
bending (f2-HB) 

5.25 4.57 – 

Three-node vertical 
bending (f3-VB) 

7.63 5.53 –  

P. Yang et al.                                                                                                                                                                                                                                    



Ocean Engineering 196 (2020) 106817

11

Fig. 15. The added mass of the bulk carrier (infinite water depth).  
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enough for a numerical assessment of removing irregular frequencies. 
Generally, the concerned frequency range is from 0.05 rad/s to 1.5 

rad/s for traditional motion and a wave load assessment for rigid 
floating structures. In this range, there are few irregular frequencies. 
Therefore, the irregular frequencies only have a small influence on the 

rigid floating structures. However, for elastic floating structures, such as 
the barge in the paper, the wet resonance frequencies are from 1.85 rad/ 
s to 3.80 rad/s, which just lie in the range of 2.0 rad/s to 6.0 rad/s with 
many irregular frequencies. Therefore, it is necessary to eliminate the 
irregular frequencies for the hydroelastic response analysis, or the 

Fig. 16. The added damping of the bulk carrier (infinite water depth).  
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structural dynamic elastic responses will exhibit distortion, as shown in 
Fig. 9. The black arrows in Figs. 9 and 10 indicate the influence. 
Although the results in Fig. 9 only show a small effect on the elastic 
mode responses, the diffraction forces of the barge in Fig. 10 from 2.0 
rad/s to 6.0 rad/s are almost zero. This causes the elastic principal co-
ordinate responses from 2.0 rad/s to 6.0 to be almost zero, except for the 
resonance points. Therefore, it is difficult to determine the influence of 
irregular frequencies on the elastic principal coordinate responses. 
However, the next results of one bulk carrier show an obvious influence 
on the elastic principal coordinate responses. 

On the other hand, the motion modes in the horizontal direction 
have more abundant irregular frequencies, such as the surge, sway, yaw 
and the horizontal bending modes. For a vertical mode, such as the 
heave, roll, pitch, vertical bending and torsion modes, the irregular 

frequencies only lie from 2.0 rad/s to 3.0 rad/s. For surge, sway and the 
horizontal bending mode, the irregular frequencies have an obvious 
influence from 2.0 rad/s to 6.0 rad/s. The irregular frequencies become 
very weak for all modes when ω is larger than 6.0 rad/s. Therefore, the 
numerical results show that the influence of the irregular frequencies 
decreases rapidly as the frequency increases. Hence, when the frequency 
is high enough, the influence of the irregular frequencies can hardly be 
observed. This is particularly helpful for the hydroelastic analysis of a 
flexible body. Here, the irregular frequency at low frequency range is 
called the “significant irregular frequency”. 

To validate the method adopted in the paper for an infinite water 
depth, the added mass and added damping are shown in Fig. 11 and 
Fig. 12. To save space, parts of the results are shown in the figures. It is 

Fig. 17. Diffraction force of each mode (water depth of 10 m).  Fig. 18. The principal coordinate responses of the bulk carrier (elastic modes, 
wave direction of 45�). 
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concluded that the method adopted in the paper can efficiently elimi-
nate the irregular frequency for an infinite water depth. The other 
conclusions are the same as the cases of a finite water depth. 

4.2. Bulk carrier 

A bulk carrier with forward speed is considered to validate the in-
fluence of irregular frequencies and the elimination method adopted in 
the paper. The dead weight of the ship is 205,000 tons. The main pa-
rameters are shown in Table 4. A model test of the ship under full 
loading conditions was carried out at the wave basin of the China Ship 
Scientific Research Center (CSSRC). 

The 3D FEM model of the ship hull has 178157 shell elements, 
124032 beam elements and 302189 elements in total. The symmetry of 
the ship allows the hydroelastic responses to be numerically calculated 
using half of the wetted surface. The half hydrodynamic model of the 
ship hull and rigid lid are shown in Fig. 13, with panels 794 and 293, 
respectively. ’case10 is without the rigid lid, and ‘case20 is with the rigid 
lid for removing the irregular frequencies. In addition, the artificial 
viscous damping ratio is 3% for heave, roll and pitch, 1% for all elastic 
modes, and zero for the other modes. The wave direction is 45�. 

The 3D FEM model of the bulk carrier in vacuum is used to calculate 
the dry global modes and corresponding dry natural frequencies. Fig. 14 
shows the modes of the two-node vertical bending, one-node torsion, 
two-node horizontal bending, and three-node vertical bending with full 
scale dry natural frequencies from 3.8 rad/s to 7.6 rad/s. 

The dry natural frequencies and wet resonance frequencies are as 
shown in Table 5. The wet resonance frequencies of the elastic modes are 
from 2.80 rad/s to 5.53 rad/s according to the numerical calculation. 
The wet resonance frequency of the two-node vertical bending mode is 
obtained by a hammering test. 

The added mass and damping for an infinite water depth are shown 
in Fig. 15 and Fig. 16; meanwhile, ρ, r and a denote the fluid density, 
displacement volume and wave amplitude, respectively. The number of 
irregular frequencies of the bulk carrier is less than that of the barge. The 
rigid lid has eliminated the influence of irregular frequencies on hy-
drodynamic coefficients and diffraction forces successfully. With L ¼
295 m, B ¼ 50 m, and T ¼ 18.1 m, the approximate results of the 
irregular frequencies calculated by Eq. (15) are 0.775, 0.783, 0.799, 
0.874, 0.883, …rad/s. The numerical results in Figs. 15 and 16 show 
that the first irregular frequency appears at 1.15 rad/s, which is larger 
than the first frequency of the approximate result. The diffraction forces 
and elastic principal coordinate responses in Fig. 17 and Fig. 18 are also 
obviously affected by the irregular frequencies, marked by a black 
arrow. 

Generally, the larger the scale of the floating structure is, the lower 
the wet resonance frequency for the elastic floating structures; mean-
while, based on Eq. (15), for the larger scale, the irregular frequency has 
a lower range. Thus, the wet resonance frequencies of Eq. (14) will lie in 
the range of the low irregular frequencies (also called significant irreg-
ular frequencies), and then the elastic responses will be obviously 
affected by the significant irregular frequencies. 

5. Conclusions 

The theoretical basis for eliminating irregular frequencies in three- 
dimensional hydroelasticity is applied by an extended boundary inte-
gral method (inherently adding a rigid lid). To validate the feasibility of 
the adopted method in hydroelasticity and investigate the phenomenon 
and law of the irregular frequency, one barge and one bulk carrier are 
taken as research objects. The effectiveness of the method and mesh of 
the rigid lid are assessed. Some important conclusions are as follows. 

(1) The extended integral method adopted in the paper can effi-
ciently eliminate the irregular frequency for an infinite water 

depth and a finite water depth. The finer the mesh of the rigid lid 
is, the better the result.  

(2) The numerical results show that the influence of the irregular 
frequencies on hydrodynamic coefficients and diffraction forces 
decreases rapidly as the responding frequency increases. Hence, 
when the main responding frequency of hydrodynamic co-
efficients, diffraction forces and hydroelastic responses is high 
enough, the influence of the irregular frequencies can hardly be 
observed. This is particularly helpful for the hydroelastic analysis 
of a flexible body.  

(3) It is quite necessary to eliminate the irregular frequency for large- 
scale elastic floating structures in the hydroelastic response as-
sessments. Since the wet resonance frequencies will lie in the 
range of the low irregular frequencies. 
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